MXB-JDBU 자기 윤활 주조 청동 베어링
Cat:자기 윤활 베어링
MXB-JDBU 자기 윤활 주조 청동 베어링은 고강도 황동 베이스에 흑연 또는 Mos2 고체 윤활제가 상감된 고성능 고체 윤활 제품입니다. 유막 윤활에 의존하는 일반 베어링의 한계를 뛰어넘었습니다. 사용 중 마찰열로 인해 고체 윤활제가 샤프트에 마찰되어 오일과 분...
자세히보다The geometry of a self-lubricating bushing plays a critical role in its performance, as it affects how the bushing interacts with the surrounding surfaces, the distribution of lubrication, and the efficiency of friction reduction. Here's a detailed look at how different aspects of bushing geometry influence performance in various mechanical systems:
Surface Area and Lubricant Distribution
Larger Contact Area: Bushings with a larger surface contact area can distribute the load over a greater surface, potentially reducing wear and improving the load capacity. A larger contact area also allows for better lubrication retention, as there’s more material to store and release lubricant.
Smaller Contact Area: A smaller contact area may result in higher localized pressure, which could increase wear if the lubrication isn’t sufficient. However, such designs may work better for lower load, high-speed applications where less friction is required.
Radial vs. Thrust Load Bearing
Radial Bushings: For radial applications (e.g., in shafts), the geometry of the bushing, including its inner and outer diameters, determines the amount of lubricant that can be retained and how it is distributed. If the bushing has a smooth surface or spiral grooves, it can enhance the movement of lubricant, improving wear resistance and lowering friction.
Thrust Bushings: These bushings are designed to handle axial loads (forces parallel to the shaft). The geometry, particularly the face area, determines how well the bushing can resist axial loads while maintaining a low coefficient of friction. The material's porosity and thickness are important in ensuring lubrication under thrust conditions.
Pore Structure and Lubricant Release
Porous Geometry: In self-lubricating bushings with porous metals or composite materials, the size, shape, and distribution of the pores directly influence how lubricant is stored and released. Larger pores may hold more lubricant but could leak it out too quickly, whereas smaller pores may retain the lubricant longer, offering better performance in low-velocity or low-load applications.
Sintered vs. Non-Sintered Designs: Sintered bushings, where the pores are formed during manufacturing, have a more uniform lubricant distribution, which leads to more consistent lubrication. Non-sintered designs may have more irregular pore structures that can impact lubricant release efficiency.
Internal and External Profiles
Internal Geometry (Bore Shape): The internal shape of the bushing (whether it's cylindrical, conical, or stepped) affects how evenly the bushing fits around a shaft or other components. A precise fit ensures minimal gap between the bushing and the shaft, improving the distribution of lubrication and reducing the chance of frictional wear.
External Geometry: The external geometry of the bushing, such as flanges or external ribs, can influence its ability to withstand external forces, like radial or axial load. Additionally, external features can help in aligning the bushing properly within its housing, ensuring uniform lubricant distribution and more even wear across the bushing.
Groove Patterns and Lubricant Flow
Grooved or Slotted Bushings: Some self-lubricating bushings incorporate grooves or slots along their surface to facilitate lubricant movement. These grooves help channel lubricant from the internal structure to the surface, improving lubrication at critical points, reducing friction, and extending the life of the bushing.
Helical Grooves: In certain designs, helical or spiral grooves are incorporated to promote the movement of lubricant in a consistent, controlled manner during rotation, helping to maintain a steady lubricant supply even during dynamic operation.

Material Thickness and Lubricant Storage
Thicker Materials: Thicker bushings, especially those with embedded lubrication systems, can store more lubricant, making them ideal for high-load or high-demand applications where lubrication is crucial. These designs allow for longer operational life since the lubricant is more abundant and can be replenished over time.
Thinner Materials: Thinner bushings may have reduced lubricant storage capacity but are lighter and more suitable for low-load or low-speed applications where minimal lubrication is required.
Load Distribution and Deformation
Load Distribution Geometry: The shape and profile of the bushing determine how forces are distributed across the bearing surface. For instance, a bushing with a tapered design might concentrate force at one point, leading to higher localized stress and faster wear. A more uniform geometry, such as a cylindrical bushing, distributes forces more evenly, which can lead to more even wear and longer service life.
Deformation Under Load: The geometry also affects how the bushing deforms under load. A bushing with the correct fit and design will deform in a controlled manner, maintaining proper lubrication coverage. Incorrectly sized bushings, or those with poorly optimized geometry, may deform excessively and lose lubrication effectiveness.
Tolerance and Clearance
Precision Fit: The tolerance between the inner and outer surfaces of the bushing influences the amount of clearance. Too tight a fit can lead to excessive friction, while too much clearance can result in instability and inefficient lubrication distribution. Optimal clearance allows for the necessary lubricant flow and ensures the bushing operates smoothly.
Clearance for Lubricant Flow: The geometry should allow enough clearance for the lubricant to flow between the bushing and the mating surface, but not too much that the lubricant is forced out prematurely. This clearance depends on the material’s ability to store and release lubrication efficiently.
Application-Specific Design
Heavy-Duty Systems: For systems that undergo extreme loads, such as automotive suspension or construction equipment, the geometry of the bushing often includes features to handle higher stress, such as thicker walls, reinforced materials, or external flanges to increase surface area and improve lubrication storage.
Precision Applications: In highly accurate systems like robotics or aerospace, bushings often have highly precise geometries, with very tight tolerances and smooth surfaces to ensure exacting performance and minimal friction.
Temperature and Speed Effects
Thermal Expansion: The geometry of the bushing will change with temperature fluctuations. Self-lubricating bushings with geometry that accommodates thermal expansion will maintain their performance under varying temperatures by maintaining proper fit and lubricant distribution.
Speed Considerations: At higher speeds, the geometry of the bushing might need to be adjusted to prevent excess heat buildup, which could cause lubricant breakdown. Grooves or larger surface areas help dissipate heat and maintain lubricant film integrity.
MXB-JDBU 자기 윤활 주조 청동 베어링은 고강도 황동 베이스에 흑연 또는 Mos2 고체 윤활제가 상감된 고성능 고체 윤활 제품입니다. 유막 윤활에 의존하는 일반 베어링의 한계를 뛰어넘었습니다. 사용 중 마찰열로 인해 고체 윤활제가 샤프트에 마찰되어 오일과 분...
자세히보다
MXB-JGLX 자기 윤활 가이드 레일은 높은 내마모성, 고온 저항성, 내식성 등과 같은 다양한 특성을 갖추고 있으며 자동차 제조 산업을 포함한 다양한 장비에 대한 안정적인 지원을 제공할 수 있습니다. 이 제품은 매개변수 표에 17개의 표준 제품을 제공하며 고객이...
자세히보다
MXB-JSP 자체 윤활 내마모성 플레이트는 구리 합금을 원료로 사용하고 흑연 인레이를 사용하여 자체 윤활을 달성하는 사출 성형기, 자동차 스탬핑 금형, 타이어 금형, 공장 기계(굴착기 등) 등에 적합합니다. 효과, 원하는 나사 구멍 직경 2/3/4/ 5/6/8/...
자세히보다
고급 흑연-코퍼 합금으로 제작 된 MXB-JSL L- 타입 자체 윤활 가이드 레일은 금형 어셈블리 내의 금형 클램핑 가이드 유전자좌에 전략적으로 설치됩니다. 이 위치 정밀도는 정밀한 가이드 윤활을 가능하게하고 상단 및 하부 금형 참여의 중추적 인 단계 동안 상당한...
자세히보다
MJGB 오일 프리 사출 가이드 부싱은 플라스틱 사출 성형 공정에 사용되는 표준 구성품으로, 사출 단계에서 금형에 무급유 가이드 및 지원을 제공합니다. 청동, 흑연 등 고품질 소재로 제작된 이 제품은 내마모성과 낮은 마찰 특성을 갖추고 있습니다. 직경이 12mm에...
자세히보다
일반적으로 푸시 플레이트는 4개의 리셋 로드로 지지됩니다. 그러나 리셋 로드의 설치 정밀도가 낮기 때문에 푸시 플레이트가 크고 무거울 경우 푸시 플레이트 자중의 영향으로 리셋 로드가 구부러지는 경우가 있습니다. 이 경우, 반복적으로 움직이는 푸시 플레이트가 푸시 ...
자세히보다
SF-1B 청동 기본 베어링은 주석 청동을 베이스로 하고, 중간에 소결 청동 구형 분말을 사용하고, 표면에 압연 PTFE 및 내열성 충진재를 사용합니다. 안전율이 높아 수리를 위해 연속 운전을 멈출 수 없는 장소, 고온의 연료를 재급유할 수 없는 장소에 특히 적합...
자세히보다
SF-1S 스테인리스강 내식 베어링은 스테인리스강을 베이스로 하고, 중간에 내식성 합금분말을 소결하고, 그 위에 폴리테트라플루오로에틸렌을 주성분으로 하는 저마찰재를 압연하여 형성한 매우 효과적인 내식성 소재입니다. 표면. 내유성, 내산성, 내알칼리성, 내해수성 및...
자세히보다
SF-1P 왕복 베어링은 SF-1X 재료의 구조와 왕복 운동의 특수한 공통 조건에 따라 설계된 새로운 공식 제품입니다. 성능은 DD2.과 유사합니다.
자세히보다
SF-2X 경계 윤활 베어링은 강철판을 기반으로 하며 중간에 소결 구형 청동 분말이 있고 표면에 변형된 폴리옥시메틸렌(POM)이 롤링되어 있으며 오일 저장 구덩이가 포함되어 있습니다. 일반 온도 조건에서 저속 및 중간 부하 장소에 적합하며 기존 구리 슬리브를 대체...
자세히보다
문의하기